1=314.019418x+24673.20799626468x^2

Simple and best practice solution for 1=314.019418x+24673.20799626468x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=314.019418x+24673.20799626468x^2 equation:



1=314.019418x+24673.20799626468x^2
We move all terms to the left:
1-(314.019418x+24673.20799626468x^2)=0
We get rid of parentheses
-24673.20799626468x^2-314.019418x+1=0
We add all the numbers together, and all the variables
-24673.2079963x^2-314.019418x+1=0
a = -24673.2079963; b = -314.019418; c = +1;
Δ = b2-4ac
Δ = -314.0194182-4·(-24673.2079963)·1
Δ = 197301.026866
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-314.019418)-\sqrt{197301.026866}}{2*-24673.2079963}=\frac{314.019418-\sqrt{197301.026866}}{-49346.4159926} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-314.019418)+\sqrt{197301.026866}}{2*-24673.2079963}=\frac{314.019418+\sqrt{197301.026866}}{-49346.4159926} $

See similar equations:

| b-4+4b=20 | | 168*x=262 | | 4(-2x+1)-2x=44 | | 10|7x+3|=0 | | (x+8)^2=0 | | 3d-4=31 | | -8x-5=+3=7+4x-9 | | -1=y/3 | | 5x-(2x-2)=8 | | 16/7x=-32/15 | | x+(3.84/x)=10 | | -7x+8(x+1)=x-7 | | -7.2(x-3.25)=21.6 | | 16=2p/5 | | -4(-2x-3=-12 | | 6n=3=2 | | 3.7=7.9-0.6x | | b+0.6=−1 | | 7x+8(x+1)=x-7 | | 10/x=8 | | 4y=5=2-8y | | 2/5-3/7=x/35 | | (3+3+3)x15=x | | 15(2x+3)=13−5x | | -2.5y=-4 | | -10=5(2w+4) | | 2(x+7)=9x-146 | | -5(6-2p)=-80 | | 5x=11/16 | | p−1=5p+3p−8 | | x–15=–6 | | 275/24=x |

Equations solver categories